

GPO PRICE	\$	
CFSTI PRICEIS	s) \$	
Hard copy (HC)	2,00
Microfiche (
ff 653 July 65		

UNIVERSITY OF MARYLAND COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

W/6 6 19196	
(Accession Number)	(THRU)
(PAGES) OR-70596	OS
(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

Technical Report TR-66-26 NsG-398

January 1966

INPUT-OUTPUT SUBROUTINE PACKAGE

UOM IOS for the IBM 7090/7094

by

Alfred E. Beam Senior Computer Systems Analyst Computer Science Center

The work on this program was performed at the Computer Science Center of the University of Maryland and was supported by Grant NsG-398 of the National Aeronautics and Space Administration.

Abstract

1919/6

This report describes an input-output subroutine package for use under the IBSYS or DC-IBSYS Monitor System on the IBM 7090/7094. The package is most useful in handling of non-standard tape records under the FORTRAN II and IBJOB sub-monitors of IBSYS. Handling of extremely long records, input records with incorrect parity, short records, variable length records, and mixed mode records are examples of good uses for the package. Also the package may be easily used to write efficient buffering routines.

Onpla

Introduction

Much of the information which must be processed on the IBM 7090/7094 consists of tape recordings in a format not easily handled by the standard library programs of systems such as IBJOB and FORTRAN II. Such information may come from satellites, radio telescopes, and medical applications. This report describes a basic tape input-output package which allows one to write a small program that handles the non-standard input-output, and the bulk of the program to process the information may be written in other languages such as FORTRAN. The package can also be used to pre-process information into standard FORTRAN records.

A new system to be put under IBSYS could utilize the package to accomplish all of its input-output.

The package requires the IOEX routines of IBSYS and will operate on any 7090/7094 IBSYS system which has tapes. Tapes are referenced by logical numbers which correspond to the standard IBSYS units (e.g. SYSIN1). Assembly parameters are provided for the package to be assembled as an IBMAP or FAP subroutine. An important feature of the routines is that they may be called at interrupt times — allowing the easy writing of buffering routines.

This package has already had wide use. Versions of the package were used exclusively by two sub-systems to accomplish all of their input-output operations. IOS is in both the IBLIB and FORTRAN II libraries on the UOM IBSYS operating systems tapes.

Identification

- a. 7090/7094 I/O Subroutine Package For IBSYS UOM IOS
- b. A. Beam, January, 1966
- c. Computer Science Center, University of Maryland, College Park, Md.

Purpose

To provide a set of basic tape input-output routines for use in the FORTRAN II and IBJOB Monitor Systems which operate under IBSYS or DC-IBSYS.

Restrictions

The symbolic deck for IOS is distributed to handle 10 logical tape units which are assigned to specific SYSuni functions. The user may alter the assignments or change the number of logical units by simple changes in the symbolic deck. The package requires IOEX for execution.

Method

Tape units are referenced by means of logical numbers which are associated in a table with SYSuni functions (SYSOUL, SYSUTL, etc.), and this table may be changed to suit the purpose of the user. All data selects (read or write in binary or BCD modes) go through a general IOEX select routine with four entries. The select routine is coded so that it may be called at interrupt time if certain conditions are met. Nondata selects are handled by a routine which in turn uses the (NDATA routine of IOEX.

<u>Usaqe</u>

Usage of the various subroutines is described later. IOS is probably most useful for special purpose tape I/O, i.e. input-output which FORTRAN II and IBJOB library routines cannot handle. Special buffering routines are comparatively easy to write using IOS.

Storage

As distributed, IOS requires about 600 cells. Storage is increased or decreased depending on two assembly parameters which are described later.

Timing

The timing depends upon the way the package is used, and on the model of the tape drives.

Checkout

Various versions of IOS have been used many hours on the 7090 and 7094. It has also been used extensively under DC-IBSYS.

Entries to IOS

A - Non-data selects

The following entries are used for non-data reference to logical tape number N, N=1,2,.... In the calling sequences, N is the logical tape number; and except when specified differently, return is always to the location following the TIX instruction.

1) Rewind logical tape N

CALL REWTAP TIX 0,0,N

2) Backspace logical tape N one record

CALL BSRTAP TIX 0,0,N

3) Rewind and unload logical tape N

CALL RUNTAP TIX 0,0,N

4) Backspace logical tape N one file

CALL BSFTAP TIX 0,0,N

5) Write end of file on logical tape N

CALL WEFTAP TIX 0,0,N

6) Set logical tape N to low density

CALL SETLOW TIX 0,0,N

7) Set logical tape N to high density

CALL SETHIH TIX 0,0,N

8) Skip M records on logical tape N

CALL SKPREC TIX M,0,N

9) Skip M files on logical tape N

CALL SKPFIL TIX M,0,N

Note: Skipping of files and records is overlapped, so computing (and I/O on channels different from the one which N is on) may go on while the skipping is done.

10) Check activity of logical tape N

CALL CHEKIO L TIX T,0,N

If T=0 then control will be returned to L+1 only after logical tape N is inactive.

If T ≠ 0 and logical tape N is inactive then control goes to location T.

If T≠0 and logical tape N is active then control is immediately returned to location L+1.

B - Data selects

The following routine has four entries and is used for all data transmission. An important feature of the routine is that it may be called at trap time. The calling sequence is

	CALL	XXXXXX
L	TIX	EOR, 0, N
L+1	TIX	L(IOC),W,ETT
L+2	TIX	EOF,T,RTT

where XXXXXX = RDSBIN for reading binary records.

RDSDEC for reading BCD records.

WRSBIN for writing binary records.

WRSDEC for writing BCD records.

Control returns to location L+3.

N = the logical tape number of the tape to be read or written.

W≠0 if it is desired to wait until the specified I/O operation is completed before returning to the caller.

T≠0 if only one try is desired for reading even though the record may be redundant. This feature is most useful when the program must determine the mode of the information to be read.

EOR, ETT, EOF, and RTT are trap time exits to the user's routines. Any or all of these exits may be zero. A user's exit (if present) must be to a routine which carries out the desired function and then returns by means of a TRA 1,4.

L(IOC) is the location of the first of a block of I/O commands. Up to P commands are allowed. If more than P commands are necessary then at least one of the first P+1 must be a TCH command. The I/O commands must terminate with a command which causes a channel interrupt, i. e. the last command must be a IOXT. The first P of the I/O commands are moved to storage within the select routine so the original block at L(IOC) may be modified immediately upon return from the select routine. However, modification is not allowed if there are more than P commands. IOS is distributed such that P=10. An assembly parameter

(described later) may be changed to increase or decrease P.

Calling sequence information is also moved to storage within IOS and hence the contents of L, L+l, and L+2 may be modified immediately upon return to L+3.

Noise records as defined in IOEX will be accepted if there is at least one input output and proceed command preceding the last I/O command, i.e. the IOXT. Hence, tape may be erased by the two I/O commands:

IOCP 0,0,0 IORT 0,0,0

However, if only the second of the above two commands was used, then there would be a noise indication.

Permanent Redundancy

IOEX is trusted to write correctly. In reading, a redundant record (as read the last time) is accepted as correct and the user's RTT exit (if specified) is taken. The maximum number of read tries is determined by an IBSYS assembly parameter, or is one if $T\neq 0$ in the calling sequence.

End of Tape

If there is no end of tape user's exit specified and the end of tape condition is detected during writing then 2 end of files are added to the tape, a message is printed for the operators and the tape is rewound and unloaded. The machine then pauses for a fresh tape. It is assumed that the record being written at the time the end of tape is encountered is short enough to be written correctly and that enough tape is left to hold the 2 end of file marks. After the pause, a check for RTT and EOR exits is made. If a user's ETT exit is specified then it is taken without doing any of the above actions.

User Exits

EOR, ETT, EOF, and RTT, if non-zero specify entries to subroutines coded by the user. Each of these subroutines must carry out its desired function and return by means of a TRA 1,4.

An entry to a user's routine is made at trap time, i.e. when an interrupt condition occurs due to channel command trap, a redundant read or write, detection of an end of file in reading, or detection of the end of tape in writing.

On entry to a user's routine the following information is available.

- a) The address of the accumulator contains the number of words read or written by the channel command just completed or in use at the time of the interrupt.
- b) The decrement of the accumulator contains the logical number of the unit in use at time of interrupt.

Restrictions on the User's Routine

- 1) The user's routine must exit by means of a TRA 1,4.
- 2) For efficient I/O, the user's routine should not be overly time consuming.
- 3) Only one user's routine is entered for a single interrupt. The order of checking for an exit is as follows:

Reading

Writing

End of file exit (EOF) End of tape exit (ETT)
Redundancy exit (RTT) Redundancy exit (RTT)
End of record exit (EOR) End of record exit (EOR)

4) Activity checking by calling CHEKIO is permissible only if in the sequence:

CALL CHEKIO TIX T,0,N

T is non-zero. If T is zero, and logical tape N is active, then an endless wait will occur.

- 5) Index registers 1, 2, the AC, MQ, and indicators need not be saved by the user's routine.
- 6) Calls to REWTAP, BSRTAP, RUNTAP, BSFTAP, WEFTAP, SETLOW, SETHIH, SKPREC, SKPFIL, RDSBIN, RDSDEC, WRSBIN, WRSDEC may be issued by a user's routine, but only for a unit on the same channel on which the interrupt occurred.

7) Storage within IOS is allocated for 8 blocks of I/O commands and parameters. The number of blocks may be increased or decreased by an assembly parameter. One of these blocks is reserved whenever a logical unit is active. It is possible (if there is not one block per logical unit) that a block will not be available when activity is required. A data-select at non-trap time causes no trouble because an automatic wait for a free block will occur. However, at trap time there may not be more than one block available and no more than one data select should be issued without insuring that there is an available block.

Restrictions 6) and 7) above may be overcome by means of a special trap time routine which may be called by the user's routine. The calling sequence is as follows:

CALL ISITOK L TIX BUSY,0,N

Control will return to location L+l if it is permissible to select logical unit N. Control is returned to location BUSY if (1) logical tape unit N is on a channel different from the one for which the trap occurred (2) logical unit N is busy or (3) there is no available storage block for I/O command and parameter storage.

On entry to ISITOK, it is assumed that the accumulator contains what it had at the time the user's routine was entered, since the logical unit number in the decrement of the accumulator is used in determining if the channel which N is on is the same as the one for which the trap occurred.

If ISITOK is to be entered more than once, then the second or greater entry may be made to ISIT11 rather than ISITOK and the accumulator as saved on the first call will be used.

It is always permissible to re-select the logical unit for which the trap occurs, and for this type of use there is no requirement to call ISITOK.

Assembly Parameters

There are several parameters which should be checked (and if necessary changed) by the user of IOS.

- 1) IOUTAB: This parameter (defined by EQU) should be set to 0 to define the first 8 logical tape units to be the same as defined in the distributed FORTRAN II system under IBSYS, and set to 1 to define the first 7 logical tape units to be the same as defined in the distributed IBJOB system.
- 2) CALL24: Set this parameter to 0 or 1 depending upon the way the subroutines of IOS are to be entered.

 Use CALL24 EQU 0 if the FAP 'CALL' instruction is desired. Use CALL24 EQU 1 if the IBMAP 'CALL' instruction is desired.
- 3) ATONCE: This parameter (distributed as 8) is the number of I/O command and parameter storage blocks allocated in the IOS package.
- 4) IOCSIZ: This parameter (distributed as 10) is the maximum number of I/O commands which are moved. The total number of cells reserved within IOS will be ATONCE* (IOCSIZ+4). This total number should not be less than 60. It is desirable that ATONCE be at least as great as the maximum number of tape units in use at any one time.

The logical tape unit table as distributed is as follows.

Logical Unit	SYSUNI (IOUTAB=1)	SYSUNI (IOUTAB=0)
1	SYSUT1	SYSLBl
2	SYSUT2	SYSUT3
3	SYSUT3	SYSUT4
4	SYSUT4	SYSUT1
5	SYSINL	SYSIN1
6	SYSOUl	SYSOUl
7	SYSPPl	SYSPPl
8	SYSCKl	SYSUT2
9	SYSCK2	SYSCKl
10	SYSLBl	SYSCK2

The table may be modified or extended by the user.

Error Exits

The only error exit in IOS is when the user specifies an illegal logical tape number. A logical tape number is considered illegal if it falls outside the range of the assembled table or if the word in the table of logical units is zero. Also if the SYSUNI function is not attached. All errors go to symbolic location ElElEl within IOS. From ElElEl, control is sent to the IBSYS dump (SYSDMP) routine. If desired, the user may substitute his own error handling.

Use of IOS With Other I/O Routines

Since IOS uses IOEX to accomplish input-output, traps must not be disabled, and machine instructions for input-output must not be issued, until all pending interrupts have a chance to be processed.

FORTRAN II library routines for input-output do not use IOEX. Therefore, before using the FORTRAN II library routines for I/O, the user must delay until IOS has completed all of its operations. This may be accomplished by giving the sequence

CALL CHEKIO TIX 0,0,N

for N=the logical tape number of each unit which has been used by IOS.

The above restriction does not apply to IBJOB.

Example 1 -- Single Record Buffered BCD Output

Write a MAP subroutine to write BCD records of length N on logical tape T. The maximum record size is M words, and the records are to be single buffered.

The subroutine to accomplish this appears below, and is used by giving the calling sequence:

CALL WRITE (DUM)

ORG *-1

OVERLAY WITH PARAMETERS A=ORIGIN OF N BCD WORDS

DUM PZE A,O,N

Returns here

The sequence could also be specified as follows:

CALL WRITE TIX A,0,N Returns here

The second sequence causes the second word of the code generated by the CALL pseudo-operation to be wrong, but the return will still be handled correctly since TIX with a tag of zero is a no operation. It is assumed that the subroutine uses an IOS assembled to handle the MAP 'CALL'.

Assembly parameters (T and M) for the WRITE subroutine are defined to write the regular output tape (SYSOUI). It is assumed that N≥3 in order to avoid writing short records which may be treated as noise.

For illustrative purposes the I/O commands are written so that short records (less than 3 words) could be written without giving a short record error message, and even to accept an N=O in which case a short piece of tape would be erased. The subroutine assumes that IOS and hence IOEX will write each record correctly, and also that IOS will handle end of tape conditions.

```
$IBMAP OUTPUT

    SINGLE RECORD BUFFERED OUTPUT ROUTINE--BCD MODE

       ENTRY WRITE
  ASSEMBLY PARAMETERS-DEFINED HERE FOR SYSOU1
Ţ
       EQU
              6
                                LOGICAL TAPE TO BE WRITTEN
M
       EQU
              22
                                MAXIMUM RECORD SIZE

    WRITE SUBROUTINE

WRITE
       SXA
              SAV4,4
       CLA
              3,4
                                AC=PZE L.O.N
       STD
              TXI
                                STORE N=NO. WORDS TO WRITE
       PAX
                0,4
                               I4=LOCATION OF N WORD REC.
IXT
       TXI
              *+1,4,**
                                COMPUTE L+N
       SXA
              GET,4
                                STORE FOR PICKUP
       CALL
             CHEKIO(TP1)
                                WAIT TILL LAST RECORD OUT
       ORG
              *-1
                                OVERLAY CALL GENERATED WD.
TP1
       TIX
             0,0,T
                                SPECIFIES THE TAPE NUMBER
       LXD
                TXI,4
                                I4=N
                *+1,4,BUFFER
       TXI
                                COMPUTE BUFFER+N
       SXA
              PUT.4
                                STORE FOR FILLING BUFFER
              TXI,4
       LXC
                                I4=N
                                OK IF .LE. M
       TXL
              #+2,4,M
       AXT
                                WRITE NO MORE THAN M WORDS
              M, 4
       SXD
              IOC,4
                                SET THE I/O COMMAND
GET
       CLA
                                MOVE THE LINE TO
              **,4
PUT
       STO
              **,4
                                THE BUFFER
              GET,4,1
       TIX
       CALL
             WRSDEC(TIX1, TIX2, TIX3) GO TO IOS TO WRITE
       ORG
              *-3
                                OVERLAY CALL GENERATED WDS
TIXI
       TIX
              0.0.T
                                T=LOGICAL TAPE
              IOC,0,0
TIX2
       TIX
                                IOC=LOC. OF I/O COMMAND
TIX3
       TIX
              0,0,0
SAV4
       AXT
                                RESTORE 14
              ##,4
       TRA
                                RETURN TO CALLER
              1,4
• I/O COMMANDS AND BUFFER STORAGE
IOC
       IOCP
                                **=LENGTH OF RECORD
             BUFFER, 0, **
       IORT
                                CAUSES INTERRUPT
              0,0,0
BUFFER BSS
              M
                                BUFFER STORAGE
       END
                                END OF WRITE SUBROUTINE
```

Example 2 -- Mixed Mode Input

Suppose a tape must be processed which contains both binary and BCD records, and also that the records vary in length. The maximum record length is known to not be greater than N. The logical tape number is T, and it is desired to read a record K times before calling it permanently redundant.

A subroutine (using IOS) is written to read one record into storage locations BUFFER+i, i=0,1,...P-l. When the record is finally read, the following information is available:

P, the length of the record is in the address of location EORS .

The mode of the record is BCD if the contents of location MODE is zero.

The record is permanently redundant if the contents of location RTTS is not zero.

The record is an end of file if the contents of location EOFS is not zero.

The name of the read subroutine is READ . A typical use of READ is described by the following diagram.

```
Process

Call the READ subroutine via a TSX READ,4.

Process

Determine that the record is completely read into BUFFER+i, i=0,...,P-1.
This is done by a two word calling sequence:
CALL CHEKIO
TIX 0,0,T
Operate on the record, using the information stored in MODE, RTTS, EORS, and EOFS to determine the operation to be performed.

Process

Process
```

"Process" in the above diagram could be any type of operations desired. The reading of a record is overlapped with computing and other I/O (on channels other than that one which T is on) operations may be performed.

One application of the above diagram would be a tape copy routine. Another application is a routine to read the system input tape (SYSIN1).

The following READ subroutine has the parameters (T and N) set for reading SYSINI which consists of unblocked binary and BCD card images. K is defined as 100 and a bad record would be read 50 times in each mode before being called permanently redundant. If the record is accepted as read the last time, then it is in the opposite mode of that one which was used for the first try. If the mode is known and it is desired to accept bad records, then it would be better to define K as an odd integer.

The first try at reading a record is always in the same mode as the previous record was read the final time. MODE is assembled for the first read to be in BCD mode.

Note that the trap time user routine for handling redundancy calls READ, the same routine which is called in the above diagram. This illustrates the select routine of IOS being called at both interrupt and non-interrupt times.

The code for READ was written to use an IOS which was assembled to use the FAP type CALL pseudo-instruction.

```
    ASSEMBLY PARAMETERS--DEFINED HERE FOR UNBLUCKED SYSIN1

K
       EQU
             100
                               MAX. NUMBER OF READ TRIES
T
       EQU
              5
                               LOGICAL TAPE TO BE READ
N
       EQU
             28
                               MAXIMUM RECORD LENGTH
• MAIN LINE READ ROUTINE
             SAVE4,4
READ
       SXA
       AXC
             GOIOS.4
                               SET 14 FOR ENTRY TO 10S
       ZET
             MODE
                               CHECK MODE OF READING
       TRA
             RDSBIN
                               READ IN BINARY MODE
20109
       TRA
             RDSDEC
                               READ IN BCD MODE
       TIX
             TRPEOR, O, T
                               TRPEUR=END OF RECORD EXIT
       TIX
              IOCOM,0,0
                               ICCOM=LOCATION OF 1/0 COM.
       XIT
              TRPEOF, 7, TRPRTT
                               EGF EXIT, 1 READ, RTT EXIT
SAVE4
       AXT
                                IOS RETURNS CONTROL HERE
             **,4
       TRA
                                EXIT
             1,4
• TRAP TIME USER ROUTINES--CALLED BY SELECT MINUS OF IOS
TRPEOR STZ
                     END OF RECORD --- IT WAS READ U.K.
             RTTS
                                STORE RECORD LENGTH
       STA
             EORS
TRPEX1 STZ
              EOFS
                                CLEAR END OF FILE WORD
TRPEX2 AXT
             K • 1
                               RESTORE THE MAXIMUM NUMBER
       SXA
              TRPCNT.1
                               OF READ TRIES
       TRA
                                RETURN TO IDS
             1,4
TRPEOF STL
                     END OF FILE--SET THE EOF SWITCH
              EOFS
       TRA
              TRPEX2
TRPRTT STA
              EORS
                     READING ERROR--SAVE THE LENGTH
                                SAVE 14 FOR RETURN TO IOS
       SXA
              TRPSV4,4
TRPCNT AXT
                                14=COUNTER FOR MAX. READS
              K,4
       TNX
              BADREC,4,1
                                TO BADREC IF CANT READ IT
       SXA
              TRPCNT,4
                                SAVE THE REDUCED COUNTER
       TSX
              BSRTAP, 4
                                BACKSPACE THE TAPE
       TIX
                                T=LOGICAL TAPE NUMBER
              0,0,T
                               FLIP THE MODE SWITCH FOR
       CLA
              MODE
                                THE NEXT READ TRY. MODE=0
       COM
       STO
              MODE
                                FOR BCD READ.
                                RE-READ IN DIFFERENT MODE
       TSX
              READ.4
TRPSV4 AXT
              **,4
                                RESTORE AND RETURN TO
       TRA
                                SELECT- ROUTINE OF IUS.
              1,4
BADREC STL
                     PERMANENTLY REDUNDANT--SET SWITCH
              RTTS
                                AND RETURN TO SELECT-. THE
       LXA
              TRPSV4,4
       TRA
                                RECORD IS ACCEPTED THO BAD
              TRPEX1

    STORAGE AND CONSTANTS

      IORT
                                COM. TO READ UP TO N WORDS
IOCOM
             BUFFER.O.N
                                RECORD IS READ INTO HERE
BUFFER BSS
MODE
       PZE
                                MODE SWITCH(O FOR BCD)
                                SET NOT O IF PERM. ERROR
RTTS
       PZE
                                SET TO RECORD LENGTH.
EORS
       PZE
                                SET NOT O IF END OF FILE.
EOFS
       PZE

    END OF READ ROUTINE
```

Symbolic List of IOS

A symbolic listing of the IOS package follows. The listing appears as a FAP subroutine. To obtain an IBMAP version, replace the * FAP card with a \$IBMAP card and redefine IOUTAB and CALL24 to be one rather than zero.

The code CLRXIN through CHEKX overlays the storage for I/O command and parameter storage. This block of code is only entered once to set up the logical unit table and other initialization. The storage allocated by ATONCE and IOCSIZ must be at least as great as this block of code.

The SKPFIL and SKPREC subroutines of IOS provide a third example of a good use of the program.

```
FAP
       LBL
              10800001
           A. BEAM--- I/O ROUTINES FOR IBJOB OR F II MONITOR SYSTEMS.
  IDENTIFICATION
      A. 7090/7094 I/O SUBROUTINE PACKAGE FOR IBSYS
                                                        UOM IOS
      B. A. BEAM, JANUARY, 1966
      C. COMPUTER SCIENCE CENTER, UNIV. OF MARYLAND, COLLEGE PARK, MD.
               RDSDEC
       ENTRY
       ENTRY
               RDSBIN
       ENTRY
               WRSDEC
       ENTRY
               WRSBIN
       ENTRY
               CHEKIO
       ENTRY
               SETLOW
       ENTRY
               SETHIH
       ENTRY
               REWTAP
       ENTRY
               RUNTAP
       ENTRY
               BSRTAP
       ENTRY
               BSFTAP
               WEFTAP
       ENTRY
       ENTRY
               ISITOK
               ISIT11
       ENTRY
       ENTRY
               SKPREC
       ENTRY
               SKPFIL
       ASSEMBLY PARAMETERS
               IOUTAB = O FOR FORTRAN II (FAP) ASSEMBLY
       MAKE
               IOUTAB = 1 FOR IBJOB (IBMAP) ASSEMBLY
       MAKE
       MAKE
               CALL24 = O IF FAP CALL IS DESIRED TO BE USED
               CALL24 = 1 IF MAP CALL IS DESIRED TO BE USED
       MAKE
IOUTAB EQU
               0
CALL24 EQU
               0
       EQU
               C'ALL24
K
T
       EOU
               IOUTAB
*MAX. NO. UNITS WHICH CAN BE HANDLED AT ONE TIME
ATONCE EQU
              8
*MAX. NO. OF I/O COMMANDS WHICH ARE MOVED
IOCSIZ EQU
             10
```

2

I/O UNIT TABLE

```
IOUTB BSS
                    MAKE ADDITIONS AFTER THIS CARD
                        FII
                                FII
                                                LOGICAL NO.
                  IBJOB
                T*SYSLB1+SYSCK2-T*SYSCK2
       PZE
                                                         10
                T*SYSCK2+SYSCK1-T*SYSCK1
       PZE
                                                          9
       PZE
                T*SYSCK1+SYSUT2-T*SYSUT2
                                                          8
       PZE
                T*SYSPP1+SYSPP1-T*SYSPP1
                                                          7
       PZE
                T*SYSOU1+SYSOU1-T*SYSOU1
                                                          6
                T*SYSIN1+SYSIN1-T*SYSIN1
                                                          5
       PZE
       PZE
                T*SYSUT4+SYSUT1-T*SYSUT1
                                                          4
       PZE
                T*SYSUT3+SYSUT4-T*SYSUT4
                                                          3
       PZE
                T*SYSUT2+SYSUT3-T*SYSUT3
                                                          2
       PZE
                T*SYSUT1+SYSLB1-T*SYSLB1
 IOPUT PZE
                IOPUT-IOUTB
                I B S Y S S Y M B O L
                                         DEFINITIONS
SYSACC BOOL
                122
SYSCK1 BOOL
                155
SYSCK2 BOOL
                156
SYSCUR BOOL
                102
SYSDMP BOOL
                115
SYSIDR BOCL
                117
SYSINI BOOL
                151
SYSLB1 BOOL
                140
SYSLB2 BOCL
                141
SYSOU1 BOOL
                147
SYSPOS BOCL
                106
SYSPP1 BOOL
                153
SYSTRA BOOL
                100
SYSUT1 BOOL
                157
SYSUT2 BOGL
                160
SYSUT3 BOOL
                161
SYSUT4 BOOL
                162
.CHEXI BOOL
                134
. MODSW BOCL
                135
(ACTIV BOOL
                702
(BCD5R BOOL
                720
(CHXAC BOOL
                724
(COMMM BOOL
                736
(CVPRT BOCL
                722
INDATA BOCL
                704
(PAUSE BOCK
                712
(PROUT BOCK
                706
(RCHXI BOCL
                727
(SYMUN BOOL
                714
(TRAPX BOCL
                734
(TRPSW BOCL
                742
(URRXI BOCL
                725
```

◆ ALL ERRORS COME HERE AND HENCE TO SYSDMP

ElE1E1 STL 0

TRA SYSDMP

```
NON-DATA SELECTS
       CALL
                YYYYYY
       TIX
                0,0,N
  YYYYYY = SETLOW, SETHIH, REWTAP, RUNTAP, BSRTAP, BSFTAP, OR WEFTAP
SETLOW LDQ
                SDL
       TRA
                NDATAX
SETHIH LDC
                SDH
       TRA
                NDATAX
REWTAP LDG
                REW
       TRA
                NDATAX
RUNTAP LDG
                RUN
       TRA
                NDATAX
BSRTAP LCC
                BSR
       TRA
                NDATAX
BSFTAP LDC
                BSF
       TRA
                NDATAX
WEFTAP LDC
                WEF
                NDAT WILL BE REPLACED BY SXD NDATAS, 4
NDATAX TRA
       NZT
                (TRPSW
                                        NON-TRAP
       SXA
                NDATAS, 4
       CLA
                1+2*K,4
       PDX
                                LOGICAL UNIT
                0,4
       TXL
                E1E1E1,4,0
                E1E1E1, 4, IOPUT-IOUTB
       TXH
       NZT
                IOPUT,4
       TRA
                E1E1E1
   INSERT OTHER CHECKS IF DESIRED......
       CAL
                IOPUT,4
       LGR
                18
       RQL
                18
       ENE
                PZEO
       STC
                NDATA1
       TSX
                (NDATA, 4
NDATAL PZE
                **,0,**
NDATAS TIX
                **,0,**
                                    TRAP TIME EXIT
       LXD
                NDATAS, 4
       ZET
                (TRPSW
       TRA
                2+2*K,4
                                      NOT TRAP TIME
       LXA
                NDATAS, 4
                                  RESTORE TRAPS
       ENB*
                (TRAPX
       TRA
                2+2*K,4
           END OF NDATA
 SDL
       PZE
                0,0,1
 SDH
       PZE
                0,0,2
 REW
       PZE
                0,0,3
 RUN .
       PZE
                0,0,4
 BSR
       PZE
                0,0,5
 BSF
       PZE
                0,0,6
 WEF
       PZE
                0,0,7
```

```
*ROUTINE TO BE USED ONLY AT TRAP TIME---CALLED BY THE USERS TRAP TIME
*ROUTINE....ON ENTRY THE AC MUST HAVE WHAT IT HAD WHEN THE USERS
*ROUTINE WAS ENTERED....
         CALLING SEQUENCE
       CALL
               ISITOK
       TIX
                              GOES TO BUSY IF N IS BUSY OR WRONG CHAN.
               BUSY.O.N
       RETURN HERE IF O.K. TO RESELECT UNIT N
 AFTER THE FIRST CALL ENTRY CAN BE TO ISIT11 IN WHICH CASE THE AC
 NEED NOT BE SUPPLIED AND THE VALUE IT HAD ON FIRST ENTRY WILL BE USED.
ISITOK STO
               ISITAC
                                 SAVE AC
               ISNOOK, 1
ISIT11 SXA
       CLA
               ISITAC
                                  RESTORE THE AC
       PDX
               0.1
                              II = TRAP UNIT
       CLA
               IOPUT,1
       ANA
               CHNLMS
       SLW
               ISITCH
                                    TRAPPED CHANNEL
       CLA
               1+2*K,4
       PDX
               0,1
                           II = UNIT IN QUESTION
       TXL
               E1E1E1,1,0
       TXH
               E1E1E1, 1, IOPUT-IOUTB
       NZT
               IOPUT.1
       TRA
               E1E1E1
                                        ILLEGAL UNIT
       STD
                                   SET UNIT FOR CHEKIO
               ISOK02
       CLA
               IOPUT.1
                              CHANNEL IN QUESTION
       ANA
               CHNLMS
       ERA
               ISITCH 
                                  DO THEY MATCH
       TZE
               ISOK01
                                YES---IF ZERO
ISNOOK AXT
               **,1
                                RESTORE AC
       CLA
               ISITAC
       TRA=
               1+2*K,4
                               GO TO BUSY EXIT
ISITAC PZE
               **
ISITCH PZE
               **
ISOKO1 SXA
                                       SAVE 14
               ISOK03,4
       TSX
                               CHECK IF UNIT FREE
               CHEKIO, 4
       IXT
               *+3.0.1
       PZE
               0
       BES
               2*K-2
ISOKO2 TIX
                                     LOGICAL UNIT
               ISOK04,0, **
                             ACTIVE---- DONT SELECT
ISOKO3 AXT
               **,4
                                 GO TO BUSY EXIT
       TRA
               ISNOOK
ISOKO4 AXT
               IOTSIZ, 1
                                    CHECK IF I/O BLOCK IS AVAILABLE
               IOCTAB+IOTSIZ,1
       NZT
       TRA
               ITISOK
                                  YES
                                     NOT YET
       TIX
               *-2,1, IOCDEC
                                   NO
       TRA
                ISOK03
ITISOK LXA
               ISOK03,4
       LXA
               ISNOOK, 1
       CLA
               ISITAC
```

TRA

2+2*K,4

```
5
```

```
• ROUTINE TO DETERMINE IF LOGICAL UNIT N IS ACTIVE
        CALLING
                         SEQUENCE
       CALL
               CHEKIO
       XIT
               T,0,N
CHEKIO TRA
                    WILL BE REPLACED BY PXA 0,1
               CHEK
       XCA
       CAL
               1+2*K,4
       PDX
               0,1
       TXL
               E1E1E1,1,0
       TXH
               ElE1E1, 1, IOPUT-IOUTB
       NZT
               IOPUT,1
       TRA
               Elelel
                                       ILLEGAL UNIT
       CLA*
               IOPUT,1
                            T NOT 0 THEN TO 2,4 IF N ACTIVE
       PAC
               0,1
       CAL
               1+2*K,4
                             T NOT O THEN TO T IF N INACTIVE
       ANA
               CHEK77
       TNZ
               CHEKIN
       ZET
               1.1
                             T = 0 THEN WAIT UNTIL INACTIVE AND TO 2.4
       TRA
               *-1
CHEKIX XCA
       PAX
               0,1
       TRA
               2+2*K,4
CHEKIN ZET
               1,1
       TRA
               CHEKIX
       PAC
               0,4
       TXI
               CHEKIX, 4, 2+2*K
CHEK77 PZE
               -1
                          END OF CHEKIO
```

6

```
* SELECT ROUTINE FOR IBSYS (WITH DC IBSYS CAPABILITY)
                IOCS IZ+1+3
IOCDEC EQU
                                     I/O COM. BLOCK SIZE
IOTSIZ EQU
                ATONCE * IOCSIZ+ATONCE * 4
DCMODE SYN
                .CHEXI
 MODSW SYN
                MODSW
RDSDEC LDQ
                RTDFLG
                                     CALL XXXXXX,4
       TRA
                RDSWRS
                                     TIX
                                          EDR.O.N
ROSBIN LDQ
                RTBFLG
                                     XIT
                                          L(IOC), W, ETT
       TRA
                RDSWRS
                                     TIX
                                          EOF, T, RIT
WRSDEC LDC
                WTDFLG
                                     RETURN
       TRA
                RDSWRS
WRSBIN LDC
                WTBFLG
RDSWRS TRA
                DATA
                        WILL BE REPLACED BY
                                               PXA
                                                    0,1
       LGR
                18
                                     SAVE II
       FREE THE UNIT
****
       CLA
                1+2*K,4
       PDX
                0.1
                                     I1 = UNIT
       TXL
                E1E1E1,1,0
       TXH
                ElE1E1,1,IOPUT-IOUTB
       NZT
                IOPUT, 1
       TRA
                E1E1E1
                                     ILLEGAL UNIT
                INSERT OTHER CHECKS IF DESIRED.
       CLA*
                IOPUT, 1
                                     PRF L(UCB1) TO AC.
       PAC
                0.1
                                     I1 = -L(UCB1)
    CHECK IF TRAP TIME AND BUSY
       NZT
                1,1
       TRA
                *+7
                               NOT BUSY
       NZT
                (TRPSW
       TRA
                *+5
                               NOT TRAP TIME
RWIGN XCL
                                TRAP TIME AND BUSY
       PDX
                0,1
                               RESTORE
                                         11
       PXC
                0.0
                               CLEAR
                                         AC
                4+2*K,4
       TRA
       ZET
                1.1
                                     WAIT FOR WORD 2
       TRA
                *-1
                                     TO BE ZERO.
                SAVE
                      L (UCB)
       LGR
                15
       ROL
                33
       FIND A FREE BLOCK FOR IOC STORAGE
RW1
       AXC
                IOCTAB, 1
RW2
       NZT
                0.1
       TRA
                                     HAVE ONE
                RW3
       TXI
                *+1,1,-IOCDEC
RWT1
       TXH
                RW2,1,** = -IOCTAB-IOTSIZ
       NZT
                (TRPSW
       TRA
                RW1
                                     KEEP LOOKING
       RQL
                18
       TRA
                        NO BLOCK AVAIL, AND ITS TRAP TIME... IGNORE CALL.
                RWIGN
                DISABLE TRAPS
RW3
       EN8
                PZEO
                                     DISABLE
       SETUP I/O STORAGE BLOCK AND (ACTIV CALL
       SXA
                                     -L(I/O STORAGE)
                UCB2.1
```

7

```
SXA
                PDNI4S.1
       CLA
                2+2*K,4
       STA
                RW11
                                      L(IOC)
       STC
                1,1
                                      L(IOC), WAIT, ETT
       CLA
                3+2*K,4
       SIT
                RTTSWT
       STO
                2,1
                                      EOF, ONETIME, RTT
       CLA
                1+2*K,4
       STC
                0,1
                                      EOR, IGNORE, UNIT
       SXD
                PDNI4S,4
                                      SAVE 14
       SXA
                RWI2,2
                                      SAVE 12
       PDX
                0,4
                                  ## I4 = UNIT
       XCL
                                      PRF I1,0,L(UCB)
       STA
                RWI1
                                      SAVE II (OF CALLER
       PDC
                0,2
                                  ** I2 = -L(UCB)
       STP
                UCB2
                                      TYPE OF SELECT
       CLA
                IOPUT,4
       STA
                RW33
                                      SET SYSUNI
       CLA
                PDN I4S
       STO
                PDN I 4+1
       NZT
                (TRPSW
       STC
                PDN 14
       PXD
                0,0
       STP
                RW33
       CAL
                WTDFLG
                                     MZE
       ZET
                (TRPSW
                                      IF TRAP TIME
       ORS
                RW33
                                     GIVE PRIORITY
       ARS
                1
       ZET
                RTTSWT
       ORS
                                     SUPPRESS RTT MESSAGE
                UCB2
       CAL
                UCB2
       SLW
                1,2
                                     PLANT UCB2
      MOVE THE COMMANDS
                                     GET NOISE IGNORE
       LAC
                UCB2,4
                                     SWITCH ADDRESS
       SXA
                RW44,4
       AXT
                0,4
RW11
       CAL
                                     ** = LOC OF USER I/O
                **,4
       SLW
                3,1
       ARS
                18+15
       LBT
                                      ITS IOXP
       TRA
                #+4
       ARS
                                     ODD
                1
       TZE
                *+4
                                      ITS TCH
                                      ITS IOXT
       TRA
                #+6
       COM
RW44
       STT
                                      IGNORE NOISE
       TXI
                *+1,4,-1
                *+1,1,-1
       TXI
       TXH
                RW11,4,-IOCSIZ-1
RWI1
      AXT
                **,1
RWI2
       AXT
                **,2
       TSX
                (ACTIV, 4
RW33
       PZE
                ##
                                     ** = SYSUNI
```

```
ENB
                PZEO
                                    DISABLE
       CLA
                PDN I 4+1
       NZT
                (TRPSW
       CLA
                PDNI4
       PAX
                0,4
                                     I4=-L(I/O STORAGE)
       XCA
                                     SAVE IN MQ
       CLA
                1,4
       ANA
                TAGMSK
                                    DO WE WAIT
       ZET
                (TRPSW
       TRA
                RW99
                               NO IF TRAP TIME
       TZE
                RW99
                                    NO IF ZERO
                WAIT UNTIL COMPLETE
       ENE*
                (TRAPX
       ZET
                0,4
                                    WAIT
       TRA
                *-1
       XCA
 RW99
       PDX
                0,4
                                    RESTORE 14
       ENB
                PZEO
       NZT
                (TRPSW
       EN8*
                (TRAPX
       TRA
                4+2*K,4
       END OF
                SETUP AND CALL (ACTIV PART
 TRAP TIME SELECT
*ON ENTRY TO MADSEL---
*UCB WORD 2 = PRF -L(I/O BLOCK), 0, MADSEL
*PRF=1X1 FOR WRITE BINARY
     1XO FOR WRITE BCD
     OX1 FOR READ
                    BINARY
     OXO FOR READ
                    BCD
*LET L(I/O BLOCK)=A ,THEN THE I/O BLOCK IS AS FOLLOWS.
 A+0
       XIT
                EOR, IGNORENOISE, N
                                    L(IOC) NOT USED BY MADSEL
 A+1
       TIX
                L(IOC), W, ETT
 A+2
       TIX
                EOF, T, RTT
 A+3
       IOXY
 A+12 IOXY
• A+13 TCH
MADSEL SXA
                                    SAVE 14
                SEL 114, 4
                                     14= L(UCB)
       PAX
                0,4
                                     INDIRECT UCB WORD1
       SXA
                SELWD1,4
       TXI
                *+1,4,1
                                     INDIRECT UCB WORD2
       SXA
                SELWD2,4
       XCA
       CLA*
                SELWD2
                                    L(I/O BLOCK)
       PAC
                0,2
                SELIOB, 2
       SXA
       PAX
                                     I2=-L(I/O BLOCK)
                0,2
       TOP
                SLPLUS
                                     SELECT +
                                     SELECT -
       TRA
                SELMN
```

```
SLPLUS TSX
              GETPAR, 4
                                RTT SWITCH
      TIX
              7,0,15
      TZE
              *+2
      STL*
              (URRXI
                                ONE TRY ONLY
                                SET FOR
      CLA
              SELIOB
      ADD
              SEL333
                                RESET AND
      STA*
              (RCHXI
                                LOAD CHANNEL
      CLA*
              SELWD1
      PDX
              0,4
                                I4= UNIT ADDRESS
      LDC*
              SELWD2
      ROL
              2
      STZ
                            SET
              MODSW
                                  BCD MODE FOR
                                                DC
      TQP
              SLPSET
      TXI
              *+1,4,16
                                MAKE BINARY
                            SET BINARY MODE FOR
      STL
              MODSW
                                                DC
SLPSET SXA
              SELWOP, 4
      SXA
              SELROP, 4
      LDC#
              SELWD2
                                READ IF PLUS
      TQP
              SELRD1
      ZET*
                                CHECK D-C
              DCMODE
SELWOP WRS
                                NOT D-C
      TRA
              SELRCH
SELRD1 ZET*
                                CHECK D-C
              DCMODE
SELROP RDS
              **
                                NOT D-C
SELRCH XEC*
              (RCHXI
SELPME LXA
              SEL [14,4
                                EXIT
      TRA
              1,4
TSX GETPAR,4
      Δ
      A+1
              NUM MASK, O, SHIFT
GETPAR CAL
              1,4
                                NUM = WORD NUMBER = 0,1,...
      STA
              SELMSK
                                MASK = 15 BIT ADDRESS MASK
                                DOES ARS SHIFT BEFORE MASKING
      ARS
              18
                                EXITS WITH RESULT IN AC.
      STA
              SELARS
      ARS
              15
      ACL
              SELIOB
      STA
              *+1
      CAL
              **
SELARS ARS
              ##
      ANA
              SELMSK
      TRA
              2,4
              END OF GET PAR
*SELECT----
                                SAVE II
 SELMN SXC
              SEL114,1
                                CHECK NOISE
      LFT
              400000
                                NO NOISE
              NNOISE
      TRA
  CHECK IF NOISE IS TO BE IGNORED.
      TSX
              GETPAR, 4
      PZE
              7,0,15
                                NOISE OK IF NOT ZERO
      TNZ
              NNOISE
              IGNORE THE NOISE
      LXA
              SEL 114,4
      TRA
              2,4
                                SAVE WORD 2
NNOISE LDQ*
              SELWD2
```

```
STZ*
                SELWD2
                                     RELEASE UNIT
       LNT
                200000
       TRA
                SELER
                                     NO EOT OR EOF
       TQP
                SELEF
                                     ITS END OF FILE
       TRA
                SELET
                                     ITS END OF TAPE
 SELER LNT
                100000
       TRA
                SELOK
                                     NO REDUNDANCY
       TSX
                GETPAR.4
                                     REDUNDANCY---ACCEPT
       TIX
                -1,0,18
                                     OR GO TO USER
       TRA
                SELEX
 SELOK TSX
                GETPAR, 4
                                     NO ERROR DETECTED
       PZE
                -1,0,0
       TRA
                SELEX
 SELET TSX
                GETPAR, 4
                                     END OF TAPE
       TXI
                -1.0.18
       TNZ
                SELEX
                                     GO TO USER EXIT
       TSX
                GETPAR, 4
                                     GET THE LOGICAL
       PZE
                -1,0,18
                                     UNIT
       PAX
                0,4
       CAL
                IOPUT,4
       STA
                SELU1
                                     SYSUNI
       STA
                SELU2
       AXT
                2,2
       TSX
                (NDATA, 4
 SELUI PZE
                **,0,7
                                     END FILE THE TAPE
       NOP
       TIX
                *-3,2,1
       TSX
                (NDATA, 4
 SELU2 PZE
                                     REWIND-UNLOAD
                **,0,4
       LDC*
                SELWD1
                                     UCB WORD 1
       TSX
                (CVPRT, 4
                                     PRINT UNIT AND
       PZE
                SELUB.0.4
                                     MESSAGE
       TSX
                (PAUSE, 4
                                     PAUSE FOR NEW TAPE
SELXT1 STZ#
                SELIOB
                                     RELEASE THE BLOCK
       TRA
                SELER
                                      EXIT
 SELUB BCI
                4, FULL TAPE---REFRESH.
 SELEF TSX
                                     END OF FILE DETECTED
                GETPAR.4
       TIX
                -1,0,0
       TRA
                SELEX
SELXTT STZ*
                SELIOB
       TRA
                SELPME
 SELEX TZE
                                CHECK FOR USER EXIT
                SELXTT
                                     THERE IS A USER EXIT.
       STA
                SELXT
                SAVE II AND I4
       CLA
                SELI14
       STO
                SELSVT
       PXC
                0,1
       PDC
                0,2
       LDC
                (COMMM, 4
       CAL
                (COMMM
       ORA
                WTDFLG
                                     WTDFLG=MZE O
       SBM
                -1,4
                                     GET NO. OF WORDS
       STA
                                     TRANSMITTED
                SELWD1
       CAL*
                SELIOB
```

```
IUS SYMBOLIC LISTING
                                                                  PAGE 11
       PDX
               0,4
               0,4
       PXD
                                   PZE NO.WDS.,O,N
       ORA
               SELWD1
       AXC
               (COMMM, 1
       STZ*
                                   FREE THE BLOCK
               SELIOB
       AXC
               *+1,4
SELXT TXI
                                   GO TO USER
               **,2,1
                                   USER RETURNS HERE
 SELUR ENB
               PZEO
       CLA
               SELSVT
       STO
               SELI14
       PDX
               0,1
                                   RESTORE II
       TRA
               SELPME
                                   EXIT
               END OF SELECT----

    CONSTANTS AND STORAGE

UCB2 PZE
               **,O,MADSEL
                                 **=-L(I/O STORAGE)
RTDFLG PZE
               0
RTBFLG PON
               0
WIDFLG MZE
               0
WTBFLG MON
               0
PZEO SYN
               RTDFLG
PDNI4S PZE
               **
RTTSWT PZE
               0,**,0
CHNLMS OCT
               017000000000
                                 CHANNEL MASK
TAGMSK PZE
               0,7,0
SELI14 PZE
                                   **=14 , 0*0 = 11
               **,0,0*0
                                   ** = L(UCB WORD 1)
SELWD1 PZE
               ##
SELWD2 PZE
                                   ** = L(UCB WORD 2)
SELIOB PZE
                                   ** = L(I/O BLOCK)
               * *
SELMSK PZE
               **
SEL333 PZE
               3
IOCTAB BSS
               IOTSIZ
PDNI4 BSS
               2
SELSVT BSS
               1
SELEND SYN
               IOCTA8-*
       BES
       PZE
CLRXIN STZ
               SELEND, 4
               *-1,4,1
       TIX
       AXT
               **,4
       TRA
               ##
INCLRX SXA
               #-2,4
       STO
               *-2
```

IOCTAB+IOTSIZ,4

RWT1,4

AXC SXD

```
* PUT ACTUAL CHANNEL INTO LOGICAL UNIT WORD
       AXT
                IOPUT-IOUTB,4
                                           I4 = NUMBER OF UNITS
CLRLP CLA*
                IOPUT,4
       NZT*
                IOPUT, 4
       STZ
                IOPUT,4
       STA
                #+1
       CLA
                ##
       ANA
                CHNLMS
       ZET
                IOPUT,4
       STD
                IOPUT,4
       TIX
                CLRLP,4,1
                SELEND-INCLRX, 4
       AXT
       CLA
                SKIPX
       STO
                SKP14T
       CLA
                NDATX
       STO
                NDATAX
       CLA
                DATAX
       STO
                RDSWRS
       CLA
                CHEKX
       STO
                CHEKIO
       TRA
                CLRXIN
SKIP
       CLA
                *+2
       TRA
                INCLRX
                SKP14T
       TRA
NDAT
       CLA
                *+2
       TRA
                INCLRX
       TRA
                NDATAX
 DATA
       CLA
                *+2
       TRA
                INCLRX
       TRA
                RDSWRS
 CHEK
       CLA
                *+2
       TRA
                INCLRX
       TRA
                CHEKIO
 SKIPX PXA
                 **,4
 NDATX SXD
                NDATAS, 4
 DATAX PXA
                0,1
 CHEKX PXA
                0,1
       BES
                SELEND-*
       END OF
                SELECT
```

```
*SUBROUTINE TO SKIP M FILES/RECORDS ON LOGICAL N
       CALL
                XXXXXX
                                  XXXXXX = SKPREC OR
       XIT
                M, O, N
                                     XXXXXX = SKPFIL
       RETURN
SKPREC LDQ
                SKPRDS
                                     PZE 0.0.L(10C)
       TRA
                #+2
SKPFIL LDC
                SKPFLS
                                     PZE 0,0,L(IDC)
SKPI4T TRA
                SKIP
                         WILL BE REPLACED BY PXA
                                                      ##,4
       LGR
                18
                                     SAVE 14
       CAL
                1+2*K,4
       PDX
                0,4
                                     LOGICAL UNIT
       TXL
                E1E1E1,4,0
       TXH
                Elelel, 4, IOPUT-IOUTB
       NZT
                IOPUT,4
       TRA
                E1E1E1
       CLA*
                IOPUT,4
       PAC
                                     -L (UCB)
                0,4
       NZT
                1,4
                                     IS UNIT BUSY
       TRA
                SKPTIP
                                     NOT BUSY
       NZT
                                     IT IS BUSY
                (TRPSW
       TRA
                #-3
                                     NOT TRAP TIME SO HOLD
       XCL
                                     IT IS TRAP TIME
                                     SO IGNORE REQUEST
       PDX
                0,4
       PXD
                0.0
                                     IF UNIT IS BUSY.
                2+2#K,4
       TRA
SKPTIP LGL
                18
       PAX
                0,4
                                     RESTORE
       SXA
                SKPI4T,4
                                     SAVE FOR TRAP TIME
       NZT
                (TRPSW
                                     NOT TRAP TIME
       SXA
                SKPI4S.4
       CLA
                1+2*K,4
       ANA
                CHEK77
                                     GET SKIP COUNT
       TNZ
                #+3
       CLA
                1+2*K,4
       TRA
                2-K.4
       ENB
                PZEO
       CLA
                1+2*K,4
       PDC
                0.4
                                     I4=-UNIT
       STD
                                     PUT UNIT INTO CALL
                SKPLGN
       LGL
                                     LOCATION OF IOC
                18
       STA
                SKPIOC
                                     PUT L(IO) INTO CALL
       STA
                                     SAVE FOR TRAP TIME
                SKPCON. 4
       STC
                SKPCON. 4
                                     SAVE COUNT FOR TRAP TIME
       NZT
                (TRPSW
                                     RESTORE TRAPS
       ENE*
                (TRAPX
       TSX
                RDSBIN. 4
       TXI
                *+5,0,1
       PZE
                0
       BES
                2*K-2
SKPLGN TIX
                SKPEOR, 0, **
                                     ** = LOGICAL UNIT
SKPIOC TIX
                **,0,0
```

```
SKPEOR, 7, SKPEOR
      XIT
      ENB
              PZEO
SKPI4S AXT
              **,4
      ZET
              (TRPSW
      LXA
              SKPI4T,4
                                ITS TRAP TIME
      NZT
              (TRPSW
      ENB*
              (TRAPX
      TRA
              2+2*K,4
SKPRDS PZE
              O,O,SKPRIO
SKPFLS PZE
              0,0,SKPFID
SKPRIO IORTN
              0,0,0
SKPFIO IORPN
              0,0,-1
SKPCON TCH
              *-1
                                 STORAGE FOR SKIPPING
      BSS
              IOPUT-IOUTB
              AT TRAP TIME-----
SKPEOR SXA
              SKPTI4,4
                                 SAVE 14
      PDC
                                 I4=-LOGICAL UNIT
              0.4
                                 PUT UNIT INTO CALL
      STD
              SKPTUN
                                 PRF L(IO), O, NTOSKP
      CLA
              SKPCON, 4
                                 L(IO) INTO CALL
      STA
              SKPTIO
      PDX
                                 REDUCE THE
              0,1
                                 SKIP COUNT
              *+1,1,-1
      TXI
      TXL
              SKPT14,1,0
                                 FINISHED IF ZERO
      PXD
              0,1
                                 PUT COUNT BACK
      STD
              SKPCON, 4
      TSX
              RDSBIN, 4
      TXI
              *+5,0,1
      PZE
              0
      BES
              2*K-2
SKPTUN TIX
              SKPEOR, 0, **
SKPTIO TIX
              **,0,0
       TIX
              SKPEOR, 7, SKPEOR
SKPTI4 AXT
              ##,4
      TRA
              1,4
             SKPFIL -- SKPREC
* ENDOF
       END
```